Experimental Charge Density and Electrostatic Potential of Triglycine

Virginie Pichon-Pesme and Claude Lecomte*
LCM3B, Laboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques, Université Henri Poincaré-Nancy 1, UPRESA CNRS 7036, Faculté de Sciences, BP 239, 54506 Vandoeuvre les Nancy CEDEX, France. E-mail: lecomte@lcm3b.u-nancy.fr

(Received 30 April 1997; accepted 26 November 1997)

Abstract

The experimental electron density distribution in triglycine has been determined using single-crystal X-ray diffraction data at 123 K to a resolution of $(\sin \theta / \lambda)_{\max }=1.1 \AA^{-1}$. Several multipolar pseudo-atom density refinements were performed against the 7238 observed data in order to estimate the net charges on the atoms. The electrostatic potential around the two molecules is calculated from the parameters derived from these refinements. A charge transfer between the two triglycine molecules of the asymmetric unit is discussed. Crystal data: $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}, M_{r}=189.2$, triclinic, $P \overline{1}, Z=4$ (two molecules in the asymmetric unit), $T=$ $123 \mathrm{~K}, a=11.585$ (1), $b=14.603$ (2), $c=4.800$ (4) $\AA, \alpha=$ 89.28 (3), $\beta=95.55(2), \quad \gamma=104.484(8)^{\circ}, \quad V=$ 782.5 (7) $\AA^{3}, D_{x}=1.61 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=1.5 \mathrm{~cm}^{-1}$ for $\lambda_{\mathrm{Mo}}=$ 0.7107 Å.

1. Introduction

We have been involved for many years in the highresolution X-ray diffraction of amino acids (Souhassou et al., 1991, 1992; Pichon-Pesme et al., 1992; Wiest et al., 1994; Lachekar et al., 1998). In these papers we have described the electron density of the atoms with the most frequently used multipole formalism (Hansen \& Coppens, 1978). These studies allowed us to show that the pseudo-atom aspherical scattering factors obtained can be transferable from one molecule to another (Pichon-Pesme et al., 1995). These transferable pieces permit us to define more precisely the atomic scattering factors for any atom in a given chemical state and environment ($\mathrm{C}^{\prime}, \mathrm{O}, \mathrm{C} \alpha, \mathrm{N}$ etc.). Therefore, we decided to create a database of all the amino acid residues. This will enable us to refine high-resolution data of small proteins (Pichon-Pesme et al., 1996). To improve our databank we report here the electron density distribution of triglycine.

The room-temperature crystal structure of triglycine was first established by Srikrishnan et al. (1982). In the crystal structure of triglycine the molecules are packed by means of numerous hydrogen bonds. Beside the electron density, the electrostatic potential will also be discussed.

2. Crystallographic analysis

2.1. Data collection

Triglycine was crystallized from water solution by solvent evaporation. A small crystal of the dimensions $0.3 \times 0.2 \times 0.04 \mathrm{~mm}$ was used to measure lowtemperature Mo $K \alpha$ X-ray diffraction data on an EnrafNonius CAD-4F diffractometer equipped with a nitrogen-vapour stream apparatus and installed in a drybox to prevent ice formation on the crystal. The gas stream temperature was maintained at $123 \pm 2 \mathrm{~K}$, as monitored by a copper-constantan thermocouple positioned $\sim 5 \mathrm{~cm}$ upstream from the crystal. The homogeneity of the beam from the graphite incident-beam monochromator was measured and the intensity varied by less than 10% over the area intercepted by the specimen crystal. Lattice parameters were obtained by least-squares fit to the optimized setting angles of the $K \alpha_{1}$ peaks of 20 reflections with $30<2 \theta<40^{\circ}$. Intensity data were recorded as $\omega-2 \theta$ scan profiles to a resolution of $\sin \theta / \lambda=1.10 \AA^{-1}$ for a total of 21145 reflections in the following way: for $\sin \theta / \lambda<0.8 \AA^{-1} 3$ equiv. were collected; after a conventional refinement against these low-order data, high-angle intensities were calculated to $\sin \theta / \lambda=1.10 \AA^{-1}$ and for those with an estimated $I>$ $6 \sigma(I)$ intensities were measured once or twice at different values of ψ. During the data collection five standard reflections ($\overline{2} \overline{4} 1, \overline{1} \overline{2} 1,250, \overline{8} \overline{5} 1$ and 201) were measured at 3 h intervals. The total scan width $(\Delta \omega)$ was $1.00+0.35^{\circ} \tan \theta$, with a constant detector aperture of $6 \times 4 \mathrm{~mm}^{2}$. A prescan speed $v=\mathrm{d} \omega / \mathrm{d} t$ of $2.75^{\circ} \mathrm{min}^{-1}$ and a final scan speed depending on the signal-to-noise ratio ($0.87<v<2.75^{\circ} \mathrm{min}^{-1}$) were used for the lowangle data collection. The high-angle data were measured at a constant scan speed $\left(0.87^{\circ} \mathrm{min}^{-1}\right)$. The total exposure time was 756 h . During the whole experiment no real problem associated with the crystal, temperature or diffractometer occurred.

2.2. Data processing

Data reduction and error analysis were performed using the programs of Blessing (1989). Reflection integration limits were from a Lorentzian model of the peak-width variations for high-order data and Gaussian

Table 1. Least-squares refinement statistics of fit

$s=\sin \theta / \lambda ;$	$R=\Sigma\left(\left\|F_{o}\right\|-K\left\|F_{c}\right\|\right) / \Sigma\left\|F_{o}\right\| ;$	$w R=\left(\chi^{2} / \Sigma w\left\|F_{o}\right\|^{2}\right)^{1 / 2} ;$	$\chi^{2}=\Sigma w\left(\left\|F_{o}\right\|-K\left\|F_{c}\right\|\right)^{2} ;$	$w=\sigma^{-2}\left(\left\|F_{o}\right\|\right) ;$	$S=\left[\chi^{2} /(n-m)\right]^{1 / 2} ; n$ data, m			
parameters; K is the scale factor.								
Refinement	$s\left(\AA^{-1}\right)$	R	$w R$	S	K	m	n	Type
A	$0.8<s<1.1$	0.0287	0.0305	0.97	0.468	235	1925	Spherical
B	$s<0.8$	0.0421	0.0500	2.29	0.482	89	5313	Spherical
C	$s<1.1$	0.0256	0.0286	1.24	0.483	465	7238	Multipolar
D	$s<1.1$	0.0255	0.0283	1.22	0.486	513	7238	Multipolar
E	$s<1.1$	0.0248	0.0257	1.14	0.486	857	7238	Multipolar
F	$s<1.1$	0.0246	0.0251	1.12	0.486	857	7238	Multipolar
G	$s<1.1$	0.0387	0.0463	1.95	0.484	97	7238	Kappa

for low-order data. A polynomial fit to the smooth decline of $\sim 3 \%$ in the standard reflections intensities over X-ray exposure was used to scale the data and to derive the instrumental instability coefficient $p=0.022$ for the calculation of $\sigma^{2}\left(|F|^{2}\right)=\sigma_{c}^{2}\left(|F|^{2}\right)+\left(p|F|^{2}\right)^{2}$, with σ_{c}^{2} propagation of error calculations. No absorption correction was performed.

The 21145 reflections with $\sin \theta / \lambda<1.10 \AA^{-1}$ were symmetry-averaged to 7238 independent data. Internal agreement, as defined in our previous studies (see, for example, Wiest et al., 1994), were $R\left(F^{2}\right)=0.0184$, $w R\left(F^{2}\right)=0.0357, R^{2}\left(F^{2}\right)=0.0110$ for all data and 0.0116 , 0.0194 and 0.0103 for the 1745 unique data with $\sin \theta / \lambda<$ $0.5 \AA^{-1}$. The low value of the agreement factors for all data also shows that the high-order data were measured with a high accuracy.

2.3. Least-squares refinements

The crystal structure at room temperature was known from Srikrishnan et al. (1982). However, the lowtemperature crystal structure was solved with SHELXS86 (Sheldrick, 1990). H atoms were found by difference-Fourier synthesis and refined isotropically against the low-order data. The bound-atom form factor for hydrogen (Stewart et al., 1965), the form factor for the non-H atoms, calculated from Clementi \& Raimondi (1963) wavefunctions, and the real and imaginary dispersion corrections to the form factors given by Cromer (1974) were used in the structure-factor calculations. The deformation density refinement was made on F^{2} with the Hansen \& Coppens (1978) model.

Fig. 1 gives the local coordinate system used in the multipolar refinement and the numbering scheme, and Fig. 2 is the ORTEPII view (Johnson, 1976) of the asymmetric unit: as two triglycine molecules exist in the asymmetric unit, the first digit (1 or 2) refers to the molecule number. First the $x y z$ parameters, the anisotropic displacement parameters of the non-H atoms and the scale factor were refined against high-order data (refinement A), then $x y z$ and the isotropic displacement motion parameters of the H atoms (refinement B) were refined. The coordinates of the H atoms were adjusted by extending along $\mathrm{C} s p^{3}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$, respectively, to 1.085 and $1.032 \AA$, which equal the average values from
neutron diffraction (Allen, 1986). The H -atom coordinates and the isotropic displacement parameters were kept fixed during the whole refinement. Several types of refinement were performed. All statistics-of-fit are given in Table 1. At the beginning of the multipolar refinement, in order to reduce the number of variables, symmetry and chemical constraints were applied to the atoms and the two molecules in the asymmetric unit were kept identical (refinement C). Owing to the good quality of the data [all data have I greater than $2 \sigma(I)$], the chemical and symmetry constraints were released (refinement D). In the third multipolar refinement (E) each triglycine molecule was refined separately, but constrained to remain neutral. The refinement of the (P_{v}, P_{lm}) density parameters was therefore carried out molecule by molecule (refinement E). The total number of parameters, including 323 position and displacement variables, was 831 , i.e. approximately 8.7 structure factors per least-square variable. The total number of parameters for refinement E is almost twice that of refinement D, and the agreement factors decrease but not dramatically; this is in agreement with our previous work (Pichon-Pesme et al., 1995) on the equality between electron density multipole parameters of the same type of atoms in the same chemical environment. The last refinement (F) allowed charge transfer between the two triglycine molecules. This transfer may account for the numerous hydrogen bonds. Refinement F was performed with initial parameters E, refining both molecules together without any constraint. This last refinement converged to slightly better statistics-of-fit than refinement E (see Table 1). Refinements E and F led to the same residual density map. Maximum residuals (0.2 e \AA^{-3}) are found close to the N-terminal

Fig. 1. Numbering scheme and local coordinate system for triglycine.
extremity (HN11). Multipolar and displacement parameters of both refinements are equal within standard deviations. The largest change concerns, as expected, the P_{v} parameters: when charge transfer between molecule 1 and molecule 2 is allowed, the P_{v} parameters of the
two carboxyl C atoms change by 0.18 e (Table 2), while the other atoms show changes in P_{v} of less than 0.08 e. The resulting net charge on each molecule is $q=+0.74 \mathrm{e}$ for molecule 1 and $q=-0.74$ e for molecule 2 compared with the lowest e.s.d. calculated from

Fig. 2. ORTEPII (Johnson, 1976) view of the asymmetric unit.

(a)

(b)

Fig. 3. ORTEPII (Johnson, 1976) view of the dimer of (a) molecule 1 and (b) molecule 2 . The rotating arrow shows the libration axis.

Table 2. Net charges (e) of atoms after refinements D, E and F with e.s.d.'s in parentheses

	D	E		For non-H atoms $U_{\text {eq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
N11	-0.68 (2)	-0.75 (3)	-0.71 (3)					
N21	-0.68 (2)	-0.67 (3)	-0.73 (3)		x	y	z	$U_{\text {eq }}$
C1A1	-0.25 (2)	-0.14 (3)	-0.07 (4)	N11	0.05709 (4)	0.43464 (3)	-0.25627 (8)	0.011
C2A1	-0.25 (2)	-0.23 (4)	-0.28 (4)	C1A1	0.18475 (4)	0.43518 (3)	-0.21362 (10)	0.011
C11	+0.10 (2)	+0.19 (3)	+0.21 (3)	C11	0.25325 (4)	0.50773 (3)	-0.40770 (9)	0.010
C21	+0.10 (2)	+0.01 (3)	-0.04 (3)	O11	0.20007 (3)	0.53920 (3)	-0.60722 (8)	0.014
O11	-0.32 (1)	-0.28 (2)	-0.25 (2)	N12	0.37126 (4)	0.53489 (3)	-0.34016 (8)	0.011
O21	-0.32 (1)	-0.40 (2)	-0.42 (2)	C1A2	0.44715 (4)	0.60839 (3)	-0.49257 (10)	0.011
N12	-0.42 (2)	-0.33 (2)	-0.33 (3)	C12	0.56896 (4)	0.63978 (3)	-0.32601 (9)	0.010
N22	-0.42 (2)	-0.38 (3)	-0.40 (3)	O12	0.59351 (3)	0.59916 (3)	-0.10874 (8)	0.014
C1A2	-0.32 (2)	-0.27 (4)	-0.22 (4)	N13	0.64619 (4)	0.71253 (3)	-0.43117 (8)	0.012
C 2 A 2	-0.32 (2)	-0.43 (4)	-0.38 (4)	C1A3	0.76322 (4)	0.75381 (3)	-0.28598 (10)	0.011
C12	+0.08 (2)	+0.10 (3)	+0.13 (3)	C13	0.82693 (4)	0.84327 (3)	-0.43166 (9)	0.010
C22	+0.08 (2)	+0.05 (3)	+0.04 (3)	O13	0.92017 (3)	0.89396 (2)	-0.29900 (7)	0.012
O12	-0.28 (1)	-0.31 (2)	-0.32 (2)	O14	0.78515 (4)	0.85933 (3)	-0.67100 (8)	0.018
O22	-0.28 (1)	-0.33 (2)	-0.38 (2)	N21	0.93357 (4)	1.08954 (3)	-0.18906 (8)	0.012
N13	-0.42 (2)	-0.44 (3)	-0.39 (3)	C2A1	0.83681 (4)	1.05025 (3)	-0.00831 (10)	0.010
N23	-0.42 (2)	-0.44 (3)	-0.45 (3)	C21	0.71962 (4)	1.01438 (3)	-0.18722 (10)	0.010
C1A3	-0.18 (2)	-0.30 (4)	-0.21 (4)	O21	0.69906 (4)	1.05279 (3)	-0.41097 (8)	0.019
C2A3	-0.18 (2)	-0.02 (3)	-0.08 (4)	N22	0.64162 (4)	0.94118 (3)	-0.08640 (8)	0.011
C13	-0.15 (3)	-0.50 (4)	-0.32 (4)	C2A2	0.52556 (4)	0.90673 (3)	-0.2395 (1)	0.012
C23	-0.15 (3)	+0.05 (4)	-0.13 (4)	C22	0.44777 (4)	0.82691 (3)	-0.08556 (9)	0.010
O13	-0.50 (1)	-0.58 (2)	-0.54 (2)	O22	0.48747 (3)	0.78941 (3)	0.12179 (8)	0.016
O23	-0.50 (1)	-0.40 (2)	-0.44 (2)	N23	0.33394 (4)	0.80054 (3)	-0.19841 (8)	0.011
O14	-0.43 (2)	-0.36 (2)	-0.31 (2)	C2A3	0.24529 (4)	0.72462 (3)	-0.08709 (10)	0.011
O24	-0.43 (2)	-0.40 (2)	-0.38 (2)	C23	0.12894 (4)	0.70332 (3)	-0.27958 (9)	0.010
HN11	+0.50 (1)	+0.53 (2)	+0.54 (2)	O23	0.04771 (3)	0.63125 (2)	-0.21562 (7)	0.012
HN21	+0.50 (1)	+0.49 (2)	+0.49 (2)	O24	0.11766 (3)	0.75462 (3)	-0.48350 (8)	0.014
HN12	+0.50 (1)	+0.58 (2)	+0.52 (2)	HN11	0.05202	0.50428	-0.26255	0.027
HN22	+0.50 (1)	+0.49 (2)	+0.47 (2)	HN12	0.00799	0.39455	-0.10911	0.021
HN13	+0.50 (1)	+0.54 (2)	+0.56 (2)	HN13	0.01548	0.40536	-0.44554	0.031
HN23	+0.50 (1)	+0.44 (2)	+0.42 (2)	H111	0.21474	0.45336	0.00458	0.019
H111	+0.25 (1)	+0.26 (2)	+0.30 (2)	H112	0.19353	0.36492	-0.26091	0.017
H211	+0.25 (1)	+0.28 (2)	+0.27 (2)	H12	0.40623	0.50562	-0.16528	0.028
H112	+0.25 (1)	+0.22 (2)	+0.21 (2)	H121	0.45850	0.58429	-0.69846	0.020
H212	+0.25 (1)	+0.24 (2)	+0.20 (2)	H122	0.40599	0.66739	-0.51813	0.016
H12	+0.39 (1)	+0.43 (2)	+0.45 (2)	H13	0.62139	0.74610	-0.60887	0.023
H22	+0.39 (1)	+0.38 (2)	+0.36 (2)	H131	0.75424	0.77292	-0.07296	0.017
H121	+0.25 (1)	+0.23 (2)	+0.26 (2)	H132	0.82214	0.70645	-0.28613	0.014
H221	+0.25 (1)	+0.23 (2)	+0.15 (2)	HN21	1.01155	1.11289	-0.05874	0.023
H122	+0.25 (1)	+0.31 (2)	+0.30 (2)	HN22	0.94354	1.03459	-0.31016	0.020
H222	+0.25 (1)	+0.23 (2)	+0.20 (2)	HN23	0.91769	1.14210	-0.32160	0.032
H13	+0.39 (1)	+0.46 (2)	+0.48 (2)	H211	0.85993	0.99468	0.12009	0.017
H23	+0.39 (1)	+0.40 (2)	+0.37 (2)	H212	0.82858	1.10501	0.13387	0.020
H131	+0.25 (1)	+0.24 (2)	+0.23 (2)	H22	0.66548	0.90669	0.09062	0.034
H231	+0.25 (1)	+0.23 (2)	+0.24 (2)	H221	0.48103	0.96399	-0.25711	0.021
H132	+0.25 (1)	+0.22 (2)	+0.22 (2)	H222	0.53771	0.88131	-0.44322	0.021
H232	+0.25 (1)	+0.21 (2)	+0.17 (2)	H23	0.30727	0.83523	-0.37173	0.027
				H231	0.27858	0.66152	-0.06611	0.017
				H232	0.22400	0.74236	0.11739	0.014

$$
\sigma(q)=\left(\Sigma \sigma_{i}^{2}\left(P_{v}\right)\right)^{1 / 2}=0.13 \mathrm{e},
$$

where i runs over all atoms of the molecule. The net charge obtained is only 5.7σ. This charge transfer could be attributed to the hydrogen bonds existing between molecules 1 and 2 (see later). A similar molecular net charge was also obtained from a kappa refinement (G) performed at the end of refinement $E(\pm 0.78 \mathrm{e})$. The convergence of all refinements was reached without correlation greater than 0.8 between P_{v} parameters even for refinement F (no constraints). In all the refinements
no extinction refinement was deemed necessary. Table 3 gives the fractional coordinates of all the atoms (refinement F). Bond distances and angles are listed Table 4. \dagger
\dagger Lists of anisotropic displacement parameters, structure factors and the density parameters from refinement F, and electron density maps have been deposited with the IUCr (Reference: BS0002). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

3. Results and discussion

3.1. Molecular conformation

The b parameter decreases significantly during cooling (1.5%) and the relative variation of the unit cell volume is 2%, but the conformation of triglycine remains identical. Fig. 2 shows the conformation of the two independent molecules of the asymmetric unit. These two molecules have an extended planar conformation and are packed in a head-to-tail fashion. All conformation angles are mostly equal to 180°, except for the φ angle involving the N -terminal in molecule $2[\varphi=$ $\left.\mathrm{N} 21-\mathrm{C} 2 A 1-\mathrm{C} 21-\mathrm{N} 22=149.3(4)^{\circ}\right]$. Indeed, this N atom (N 21) and the O atom (O21) form an intramolecular hydrogen bond $[\mathrm{N} \cdots \mathrm{O}=2.7438$ (6) Å]. The geometry of the intermolecular hydrogen bonding has been described extensively by Srikrishnan et al. (1982) and we refer the reader to this paper. Each $\mathrm{COO}^{-}, \mathrm{NH}_{3}^{+}$, CO and NH group is involved in at least one hydrogen bond (single or bifurcated). As a consequence, the density of this compound is high $\left(1.61 \mathrm{~g} \mathrm{~cm}^{-3}\right.$ at 123 K , $1.58 \mathrm{~g} \mathrm{~cm}^{-3}$ at room temperature). The intermolecular hydrogen-bond distances decrease an average of 1% when the crystal is cooled down to 123 K . Hydrogen bonds at room temperature and 123 K are listed in Table 5.

3.2. Thermal vibration analysis

The Hirshfeld rigid-bond test (Hirshfeld, 1976) was carried out on both molecules. All mean square displa-

Fig. 4. Experimental deformation electron density of one peptide group. Contour interval $0.05 \mathrm{e}^{-3}$; positive solid line, negative dashed line, zero contour omitted.

Table 4. Selected geometric parameters ($\AA \AA^{\circ}$)

N11-C1A1	1.4714 (6)	$\mathrm{N} 21-\mathrm{C} 2 \mathrm{A1}$	1.4806 (6)
C1A1-C11	1.5224 (6)	C2A1-C21	1.5117 (6)
C11-O11	1.2347 (6)	C21-O21	1.2357 (6)
C11-N12	1.3334 (6)	C21-N22	1.3348 (6)
N12-C1A2	1.4466 (6)	N22-C2A2	1.4426 (6)
C1A2-C12	1.5193 (6)	$\mathrm{C} 2 \mathrm{~A} 2-\mathrm{C} 22$	1.5161 (6)
C12-O12	1.2376 (6)	C22-O22	1.2351 (6)
C12-N13	1.3350 (6)	C22-N23	1.3393 (6)
N13-C1A3	1.4512 (6)	N23-C2A3	1.4461 (6)
C1A3-C13	1.5280 (6)	C2A3-C23	1.5244 (6)
C13-O13	1.2646 (5)	C23-O23	1.2804 (5)
C13-O14	1.2457 (6)	C23-O24	1.2419 (6)
N11-C1A1-C11	108.69 (4)	N21-C2A1-C21	109.77 (4)
O11-C11-N12	124.12 (4)	$\mathrm{O} 21-\mathrm{C} 21-\mathrm{N} 22$	123.31 (4)
O11-C11-C1A1	120.79 (4)	O21-C21-C2A1	120.62 (4)
N12-C11-C1A1	115.07 (4)	$\mathrm{N} 22-\mathrm{C} 21-\mathrm{C} 2 \mathrm{A1}$	116.07 (4)
$\mathrm{C} 11-\mathrm{N} 12-\mathrm{C} 142$	121.44 (4)	$\mathrm{C} 21-\mathrm{N} 22-\mathrm{C} 2 A 2$	118.87 (4)
N12-C1A2-C12	108.75 (4)	N22-C2A2-C22	111.12 (4)
$\mathrm{O} 12-\mathrm{C} 12-\mathrm{N} 13$	123.16 (4)	$\mathrm{O} 22-\mathrm{C} 22-\mathrm{N} 23$	123.84 (4)
O12-C12-C1A2	121.25 (4)	$\mathrm{O} 22-\mathrm{C} 22-\mathrm{C} 2 \mathrm{~A} 2$	122.42 (4)
$\mathrm{N} 13-\mathrm{C} 12-\mathrm{C} 1$ A2	115.59 (4)	$\mathrm{N} 23-\mathrm{C} 22-\mathrm{C} 2 \mathrm{~A} 2$	113.73 (4)
C12-N13-C1A3	121.69 (4)	$\mathrm{C} 22-\mathrm{N} 23-\mathrm{C} 2 \mathrm{~A} 3$	122.71 (4)
N13-C1A3-C13	111.00 (4)	$\mathrm{N} 23-\mathrm{C} 2 \mathrm{~A} 3-\mathrm{C} 23$	110.46 (4)
O14-C13-O13	125.44 (4)	O24-C23-O23	124.18 (4)
$\mathrm{O} 13-\mathrm{C} 13-\mathrm{C} 1$ A3	116.46 (4)	$\mathrm{O} 24-\mathrm{C} 23-\mathrm{C} 2 \mathrm{~A} 3$	119.97 (4)
O14-C13-C1A3	118.07 (4)	$\mathrm{O} 23-\mathrm{C} 23-\mathrm{C} 2 \mathrm{~A} 3$	115.85 (4)

cement amplitudes along bond directions differed by less than $0.001 \AA^{2}$, indicating that the multipole refinement yielded an effective deconvolution of the meansquare atomic displacements from the valence electron density deformation. The THMA11 program of Trueblood (1990) was used to perform $T L S+\varphi$ analysis on the two individual molecules. The results are given in Table 6. Molecule 2 appears to be more rigid than molecule 1: hence, molecule 1 forms a centrosymmetric dimer by means of two H12..O12 hydrogen bonds, leading to a ten-membered ring (Fig. 3a), which allows the non-rigid motion of both N -terminal and C-terminal residues. This is not the case for molecule 2 , which forms a dimer by means of two ten-membered rings involving COO and NH_{3} residues (Fig. 3b).

3.3. Electron density

The experimental deformation electron density of one peptide group is shown in Fig. 4, calculated from

$$
\begin{aligned}
\delta \rho(\mathbf{r})= & V^{-1} \Sigma\left(\left|F_{o}\right| \exp \left(i \varphi_{m}\right)\right. \\
& \left.-\left|F_{s}\right| \exp \left(i \varphi_{s}\right)\right) \exp (-2 \pi i \mathbf{H r}),
\end{aligned}
$$

where F_{o} and F_{s} are observed and spherical structurefactor amplitudes, respectively, and φ_{m} and φ_{s} are the multipolar and spherical phases, respectively. The sum is over all observed structure factors [with a resolution of $\left.(\sin \theta / \lambda)_{\max }=0.9 \AA^{-1}\right]$. The deformation maps of the other peptides groups maps look very similar. \dagger Positive

[^0]Table 5. Hydrogen bond distances (\AA) and angles (${ }^{\circ}$) from this study (refinement F) at 123 K and from a previous study at room temperature, values in italic
(Srikrishnan et al., 1982)

$D-\mathrm{H} \cdots A$	D \cdots A	$\mathrm{H} \cdots \mathrm{A}$	$D-\mathrm{H}-A$
$\mathrm{N} 11-\mathrm{HN} 12 \cdots \mathrm{O} 23^{\text {i }}$	2.7246 (5)	1.7453 (4)	156.75 (2)
	2.733	1.77	163
N11-HN13 . ${ }^{\text {O }} 23{ }^{\text {ii }}$	2.7762 (5)	1.7501 (3)	173.14 (2)
	2.789	1.71	172
N11-HN11 \cdots O23 ${ }^{\text {iii }}$	2.9098 (6)	1.8841 (4)	171.46 (2)
	2.941	1.99	172
$\mathrm{N} 21-\mathrm{HN} 21 \cdots \mathrm{O} 13^{\text {iv }}$	2.7312 (5)	1.8322 (3)	143.40 (2)
	2.749	1.86	143
N21-HN23.. ${ }^{\text {O }} 1^{\text {iii }}$	2.7438 (6)	2.5400 (4)	89.35 (1)
	2.744	2.53	93
N21-HN22 . ${ }^{\text {O }} 13^{\text {iii }}$	2.8740 (6)	2.0039 (4)	140.18 (2)
	2.925	2.18	140
N21-HN23 . . $\mathrm{O} 24^{\text {v }}$	2.8994 (6)	1.8753 (4)	171.61 (3)
	2.913	1.98	174
$\mathrm{N} 12-\mathrm{H} 12 \cdots \mathrm{O} 12{ }^{\text {iii }}$	2.6472 (5)	2.2494 (4)	101.00 (2)
	2.658	2.26	108
$\mathrm{N} 12-\mathrm{H} 12 \cdots \mathrm{O} 12{ }^{\text {vi }}$	2.9606 (6)	2.0056 (4)	152.83 (2)
	2.991	2.20	152
N13-H13 . ${ }^{\text {O }} 14{ }^{\text {iiii }}$	2.6613 (5)	2.2249 (4)	103.48 (2)
	2.663	2.30	104
$\mathrm{N} 13-\mathrm{H} 13 \cdots \mathrm{O} 22^{\text {vii }}$	3.0749 (6)	2.1356 (4)	150.46 (3)
	3.107	2.28	156
$\mathrm{N} 22-\mathrm{H} 22 \cdots \mathrm{O} 22^{\text {iii }}$	2.7220 (5)	2.3442 (3)	100.10 (2)
	2.729	2.39	103
$\mathrm{N} 22-\mathrm{H} 22 \cdots \mathrm{O} 14^{\text {viii }}$	2.9089 (6)	1.9653 (4)	150.58 (3)
	2.940	2.12	153
$\mathrm{N} 23-\mathrm{H} 23 \cdots \mathrm{O} 21^{\text {v }}$	2.9016 (6)	1.9416 (4)	153.68 (2)
	2.292	2.07	156
$\mathrm{N} 23-\mathrm{H} 23 \cdots \mathrm{O} 24^{\text {iii }}$	2.6683 (5)	2.2346 (3)	103.36 (2)
	2.676	2.27	107

Symmetry codes: (i) $-x, 1-y,-z$; (ii) $-x, 1-y,-1-z$; (iii) x, y, z; (iv) $2-x, 2-y,-z$; (v) $1-x, 2-y,-1-z$; (vi) $1-x, 1-y,-z$; (vii) $x, y,-1+z$; (viii) $x, y, 1+z$.
densities are observed along valence bonds and the Oatom lone pairs show up. The bonding maxima are located between the nuclei and their heights are summarized in Table 7 compared with those obtained on Leu-enkephalin dihydrate (Wiest et al., 1994) and N -acetyl- α, β-dehydrophenylalanine methylamide (Souhassou et al., 1992). A very good agreement within estimated $\sigma\left(0.05 \mathrm{e}^{\circ} \AA^{-3}\right)$ is observed. The two distinct lobes in the oxygen lone pair are better resolved than in our previous study of Leu-enkephalin; their height varies in the range $0.20-0.40$ e \AA^{-3}. The static electron density \dagger also agrees with our previous work and ab initio SCF (self-consistence field) calculation (Souhassou et al., 1992).

3.4. Electrostatic potential

The electrostatic potential was calculated using the Electros program (Ghermani et al., 1992) for each

[^1]molecule considered as a pseudo-isolated entity removed from the crystal lattice. Figs. $5(a)$ and $5(b)$ show the electrostatic potential of each molecule of the asymmetric unit in the $\mathrm{N} 12, \mathrm{O} 12, \mathrm{C} 12$ ($\mathrm{N} 22, \mathrm{O} 22, \mathrm{C} 22$) plane calculated from refinement D, i.e. both molecules
\qquad

(a)
$1 \AA$

(b)

Fig. 5. Electrostatic potential of the two molecules in the planes (a) N12, O12, C12 and (b) N22, O22, C22 after refinement D. Contour interval 0.10 e \AA^{-1}; positive solid line, negative dashed line, zero contour as broken lines.

Table 6. Thermal vibration analysis

	Molecule 1		Molecule 2	
	Rigid	Flexible	Rigid	Flexible
	0.111	0.076	0.102	0.073
n observations 78	78	78	78	78
m parameters 20	20	32	20	26
Librating group		Libration axis	$\left\langle\varphi^{2}\right\rangle\left({ }^{\circ}\right.$)	Force constant ($\mathrm{J} \mathrm{mol}^{-1}$ deg^{-2})
C13-O13-O14		N13-C1A3	29.4 (6.0)	35.6 (6.1)
N11-C1A1-C11-O11		N12-C1A2	14.9 (4.9)	71.8 (18.3)
$\mathrm{N} 21-\mathrm{C} 2 \mathrm{~A} 1-\mathrm{C} 21-\mathrm{O} 2$	21	$\mathrm{N} 22-\mathrm{C} 2 A 2$	10.6 (4.9)	100.3 (33.8)

were constrained to have the same electron density. As expected, the potential around the two molecules is the same, with negative potential around the negative carboxyl groups. The differences observed are only due to the slightly different conformation of both triglycine molecules. We note that the potential around O 11 (O21) is almost zero, even though the oxygen charge is -0.32 e: indeed, these carbonyl atoms are very close to the electropositive area due to the presence of NH_{3}^{+} groups.

Figs. $6(a), 6(b), 7(a)$ and $7(b)$ show the potential calculated in the same planes from refinements E and F. In refinement E, in which only the electroneutrality of each individual molecule is imposed, the electrostatic potential changes by ~ 0.1 e \AA^{-1} around the carboxyl group compared with that calculated from refinement D and we observe a slightly more negative area around O21. This difference increases when we use the parameters of refinement F : molecule 1 (Fig. 7a) appears to be less negative than molecule 2 in the carboxyl group region, in agreement with the net charges of both molecules ($\pm 0.74 \mathrm{e}$).

4. Conclusions

The overall picture of the electrostatic potential and charge density is the same for all refinements, but a closer examination shows that the resulting electrostatic properties derived from this electron density study can be very much dependent on the refinement strategy. The problem is to know which of the three refinements performed is the closest to reality. On the one hand, as both triglycine molecules are almost in the same conformation, we expect very similar charges for each molecule. This is in agreement with the transferability of electron density parameters which we published a year ago. On the other hand, there are many hydrogen bonds (see Table 5) linking together molecule 1 to molecule 1,
molecule 2 to molecule 2 and molecule 1 to molecule 2 . Some of these are strong ($\mathrm{N} \cdots \mathrm{O}=2.70 \AA$) enough to involve charge transfer between molecules. This could explain the result of the refinement F, but the net charge of each triglycine molecule appears to be too large (± 0.74 e) compared with the charge transfer found, for example, in the one-dimensional metal BTDMTF-

Fig. 6. As in Fig. 5 after refinement E.

TCNQ at 130 K [0.7 e by charge density refinement (Espinosa et al., 1997) and 0.6 e by diffuse scattering experiment (Rovira et al., 1995)]. Therefore, as (a) the statistical indices for both refinements E and F are almost equal (Table 1), (b) the hydrogen bonds involved in the formation of dimers between molecules 1 and molecules 2 are almost balanced in the sense that the

$1 \AA$

(a)

(b)

Fig. 7. As in Fig. 5 after refinement F.

Table 7. Experimental deformation electron density peaks $\left(e \AA^{-3}\right)$ in triglycine for the four peptide bonds

	$\mathrm{C}^{\prime}=\mathrm{O}$	$\mathrm{C}^{\prime}-\mathrm{N}$	$\mathrm{C}^{\prime}-\mathrm{C} \alpha$	$\mathrm{C} \alpha-\mathrm{N}$	$\mathrm{N}-\mathrm{H}$
$\mathrm{N} 12-\mathrm{C} 11-\mathrm{O} 11$	0.45	0.50	0.45	0.35	0.50
$\mathrm{~N} 13-\mathrm{C} 12-\mathrm{O} 12$	0.55	0.40	0.45	0.35	0.45
$\mathrm{~N} 22-\mathrm{C} 21-\mathrm{O} 21$	0.45	0.45	0.50	0.35	0.50
$\mathrm{~N} 23-\mathrm{C} 22-\mathrm{O} 22$	0.55	0.40	0.40	0.30	0.50
$<$ Trig $>\dagger$	0.50	0.44	0.45	0.34	0.49
$<$ Enk $>\ddagger$	0.50	0.49	0.38	0.30	0.40
Ac $\Delta \S$	0.57	0.50	0.47	0.36	0.47

\dagger Average values of triglycine. \ddagger Average values of leu-enkephalin (Wiest et al., 1994). § Average values of N-acetyl- α, β-dehydrophenylalanine methylamide (Souhassou et al., 1992).
number of NH donor groups is the same for each molecule (Table 5), and (c) the minimum e.s.d. on the total charge of triglycine is 0.13 e , the results of refinement E seem to be the most reliable. However, in order to solve this problem, we are performing refinements using model structure factors calculated from refinements E and F. The results will be published later.

The authors thank Dr Enrique Espinosa for helping during the data collection. VPP is grateful for the hospitality of Professor P. Coppens during a 6 month postdoctoral position and NATO for a postdoctoral fellowship (1993).

References

Allen, F. (1986). Acta Cryst. B42, 515-522.
Blessing, R. H. (1989). J. Appl. Cryst. 22, 396-397.
Clementi, E. \& Raimondi, D. L. (1963). J. Chem. Phys. 41, 2686-2689.
Cromer, D. T. (1974). International Tables for X-ray Crystallography, eidted by J. A. Ibers \& W. E. Hamilton, pp. 148-151. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Espinosa, E., Molins, E. \& Lecomte, C. (1997). Phys. Rev. B, 56, 1820-1833.
Ghermani, N.-E., Bouhmaida, N. \& Lecomte, C. (1992). ELECTROS. Computer Program to Calculate Electrostatic Properties from High Resolution X-ray Diffraction. Internal report URA CNRS 809. University of Nancy 1, France.
Hansen, N. K. \& Coppens, P. (1978). Acta Cryst. A34, 909921.

Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak
Ridge National Laboratory, Tennessee, USA.
Lachekar, H., Pichon-Pesme, V. \& Lecomte, C. (1998). Acta Cryst. Submitted.
Pichon-Pesme, V., Lecomte, C. \& Lachekar, H. (1995). J. Phys. Chem. 99, 6242-6250.

Pichon-Pesme, V., Lecomte, C., Wiest, R. \& Bénard, M. (1992) J. Am. Chem. Soc. 114, 2713-2715.

Pichon-Pesme, V., Lachekar, H. \& Lecomte, C. (1996). International Union of Crystalography Congress, Seattle, Washington, USA.
Rovira, C., Tarrés, J., Llorca, J., Molins, E., Jeciana, J., Yang, J., Cowan, D. O., Garrigou-Lagrange, C., Amiell, J., Delhoes, P., Canadell, E. \& Poujet, J. P. (1995). Phys. Rev. 52, 8747-8758.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473
Souhassou, M., Lecomte, C., Blessing, R. H., Aubry, A., Rohmer, M.-M., Wiest, R. \& Bénard, M. (1991). Acta Cryst. B47, 253-266.

Souhassou, M., Lecomte, C., Ghermani, N.-E., Rohmer, M.-M., Wiest, R., Bénard, M. \& Blessing, R. H. (1992). J. Am. Chem. Soc. 114, 2371-2382.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 43, 175-187.
Srikrishnan, T., Winiewicz, N. \& Parthasarathy, R. (1982). Int. J. Pept. Protein Res. 19, 103-113.

Trueblood. K. N. (1990). THMA11. Program for Thermal Motion Analysis. University of California at Los Angeles, USA.
Wiest, R., Pichon-Pesme, V., Bénard, M. \& Lecomte, C. (1994). J. Phys. Chem. 98, 1351-1362.

[^0]: \dagger See deposition footnote on p. 488.

[^1]: \dagger See deposition footnote on p. 488.

